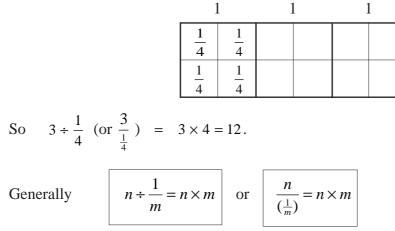
5: Dividing Whole Numbers by Fractions

Question: What is	the value of $3 \div \frac{1}{4}$	
-------------------	-----------------------------------	--


Misconception	Correct				
The value of $3 \div \frac{1}{4}$ is equivalent to $3 \div 4$	The division $3 \div \frac{1}{4}$ means how many $\frac{1}{4}$				
and hence has value $\frac{3}{4}$ or 0.75	are there in the number 3. Clearly there are				
	4 quarters in 1 and hence 3×4 (=12) in 3.				
Similarly $5 \div \frac{1}{2}$ is equivalent to $5 \div 2$ and	So $3 \div \frac{1}{4} = 12$				
hence has value 2.5 or $2\frac{1}{2}$					

Further Explanation

We must learn NEVER to be influenced by what things look like: the meaning of dividing by 2, dividing by 5, etc. is clear: the concept of dividing by a quarter is, however, less straightforward and requires more thought.

Think of $3 \div \frac{1}{4}$ as 'the number of $\frac{1}{4}$'s that fit into 3'.

There are 4 quarters in 1, so in 3 there are 3×4 quarters in 3 as can be seen in the diagram below.

Hence, for example, $5 \div \frac{1}{2} = 5 \times 2 = 10$.

Misconception 5

There is another way to approach this task *logically* which we will demonstrate with $6 \div \frac{3}{5}$.

Use the problem solving method – 'if you are having difficulties, find something similar which you know you CAN do and work out the difference between this and the problem given'.

The difficult part here is *dividing by a fraction*.

Start with something similar which is straightforward: just divide the 6 by 3 $\left(\frac{6}{3}\right)$. Now

continue by examining the effect of the difference between what we did and what was given (using clearer terminology to refer to division, i.e. divide *between*).

We divided the 6 by 3 instead of by the given $\frac{3}{5}$ (which is, of course, less than 3).

When a cake is divided between a certain number of people, each gets a certain portion. Dividing it between *fewer people* results in each one receiving a larger portion. How much larger? If it is divided between, say, 5 times fewer people, each portions would become 5 times larger.

We arrived at 2 by dividing the 6 by 3. We *should* have divided by something that is 5 times smaller than the 3, (by $\frac{3}{5}$), so, the result should be 5 times *larger* than the $\frac{6}{3}$. Thus we deduce that our $6 \div \frac{3}{5}$ must mean $\frac{6}{3} \times 5$ (= 10). Generalising,

$$a \div \frac{b}{c} \left(\text{or } \frac{a}{\frac{b}{c}} \right) = \frac{a}{b} \times c \left(= \frac{a \times c}{b} = a \times \frac{c}{b} \right)$$

Yet another way of determining $\frac{3}{\frac{1}{4}}$ is to forget about the unclear meaning of *dividing by a fraction* and to do whatever yields a result which doesn't contradict other things that are already established.

Whatever we mean by $\frac{p}{k}$, we already know that its result, *r*, must be such that $r \times k$ will be equal to *p*. i.e. in $\frac{p}{k} = r$, *r* must be such that $r \times k = p$, (e.g. $\frac{187}{11}$ is 17 because $17 \times 11 = 187$). Following this for $\frac{3}{\frac{1}{4}}$, we simply seek a result which gives 3 when multiplied by a $\frac{1}{4}$. The question then becomes: "what times a quarter is 3?", or using a familiar rephrasing "a quarter of what is 3?" (The answer is of course 12.) In summary

to determine the value of r in $\frac{3}{\frac{1}{4}} = r$, find which value of r satisfies $r \times \frac{1}{4} = 3$

Follow-up Exercises

1. Calculate the value of:

(a)
$$4 \div \frac{1}{2}$$
 (b) $3 \div \frac{1}{3}$ (c) $6 \div \frac{1}{4}$ (d) $10 \div \frac{1}{5}$

- (e) $4 \div \frac{1}{3}$ (f) $5 \div \frac{1}{4}$ (g) $20 \div \frac{1}{5}$ (h) $6 \div \frac{1}{6}$
- 2. Calculate the value of:

(a)
$$4 \div \frac{2}{5}$$
 (b) $3 \div \frac{3}{4}$ (c) $10 \div \frac{2}{3}$ (d) $4 \div \frac{3}{4}$

(e)
$$6 \div \frac{3}{5}$$
 (f) $1 \div \frac{2}{5}$ (g) $7 \div \frac{5}{8}$ (h) $20 \div \frac{4}{5}$

Answers

1.	(a) 8	(b) 9	(c) 24	(d) 50	(e) 12	(f) 20	(g) 100	(h) 36
2.	(a) 10	(b) 4	(c) 15	(d) $\frac{16}{3}$	(e) 10	(f) $\frac{5}{2}$	(g) $\frac{56}{5}$	(h) 25