Australian Curriculum: Mathematics - where is time? Collated by Mike Chartres

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Content descriptions } \\ \text { Substrand - Using } \\ \text { units of Measurement }\end{array} & \text { Proficiency strands } & \text { Achievement Standard }\end{array} \begin{array}{l}\text { Numeracy continuum } \\ \text { "operate with clocks, } \\ \text { calendars and } \\ \text { timetables" }\end{array}\right]$

Content descriptions Substrand - Using units of Measurement	Proficiency strands	Achievement Standard	Numeracy continuum "operate with clocks, calendars and timetables"
Year 6 * Interpret and use timetables	+ Fluency interpreting timetables	* Students interpret timetables	* convert between 12and 24 -hour systems to solve time problems, \& interpret and use timetables from print and digital sources
Year 7	Problem Solving includes formulating and solving authentic problems using ... measurements?		
Year 8 - Real Numbers * Solve a range of problems involving rates and ratios, with and without digital technologies Year 8 - Using units of measurement + Solve problems involving duration, including using 12and 24 -hour time within a single time zone		\& students solve everyday problems involving rates	* use 12 - and 24 -hour systems within a single time zone to solve time problems, * place personal and family events on an extended time scale
Year 9 - Using units of measurement + Investigate very small and very large time scales and intervals		+ Students apply the index laws to numbers and express numbers in scientific notation?	
Year 10 and 10A Using units of measurement			* use 12 - and 24 -hour systems within a multiple time zone to solve time problems, use large and small timescales in complex contexts * place historical and scientific events on an extended time scale

